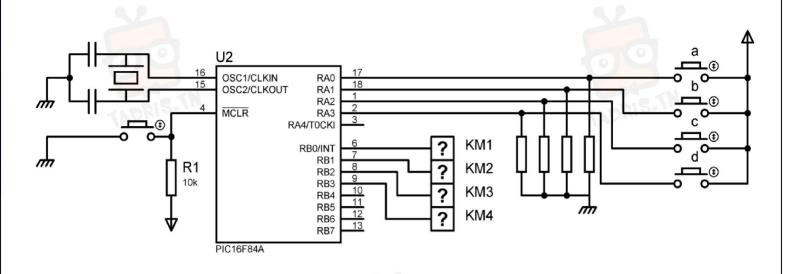
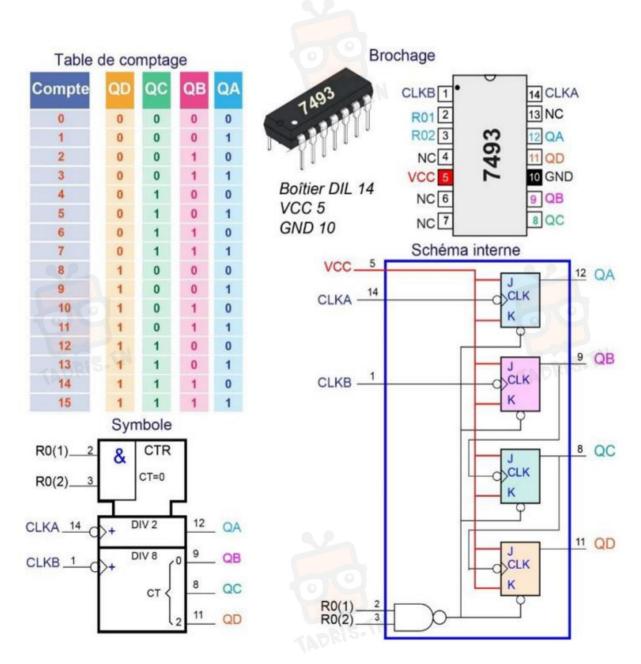
DEVOIR DE SYNTHESE N° 1

I / PRESENTATION DU SYSTEME :

Une nacelle électrique est défini par les images ci-dessous :

II / FONCTIONNEMENT DU SYSTEME :


- Les mouvements de la nacelle sont assurés par deux moteurs électriques (T , S) à deux sens de rotation.
- Le moteur S commande la montée et la descente.
- Le moteur T commande le déplacement vers la droite ou vers la gauche.
- La boite de commande comprend 4 boutons poussoirs (a, b, c, d):
 - La nacelle monte si (a) est actionné, elle s'arrête si (a) est relâché.
 - La nacelle descend si (b) est actionné, elle s'arrête si (b) est relâché.
 - La nacelle se déplace vers la gauche si (c) est actionné, elle s'arrête si (c) est relâché.
 - La nacelle se déplace vers la droite si (d) est actionné, elle s'arrête si (d) est relâché.
 - > Si par erreur l'on actionne simultanément (a et b) seulement Le moteur S se bloque.
 - ➤ Si par erreur l'on actionne simultanément (c et d) seulement Le moteur T se bloque .
 - Toutefois les deux déplacements (Horizontale, verticale) peuvent s'opérer simultanément.


Tableau D'affectation

Monté	Descente	Gauche	Droite
KM1	KM2	KM3	KM4

Carte électronique de commande de la nacelle

A C.	/stème		l= : =.	L :	
A>1	/STAMA	com	nına	mre.	
, , <u>, , , , , , , , , , , , , , , , , </u>	CICITIC	OULL	<u>vii iu</u>	LUIIU	_

	* * *	
Variables d'entrées :		92
<mark>Variabl</mark> es de sorties :		

2- On se référant au dossier technique, compléter la table de vérité suivante :

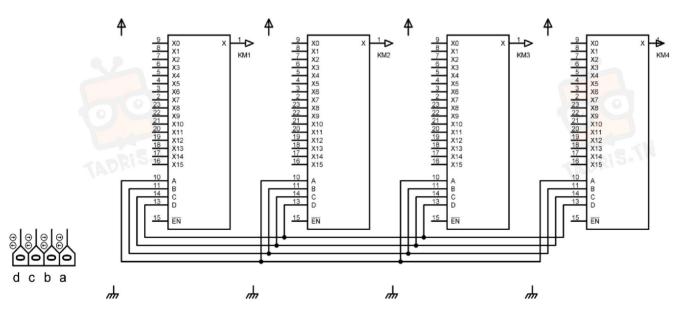
а	b	C	d	KM1	KM2	KM3	KM4
-			_				
0	0	0	0				
0	0	0	1				
0	0	1	0				
0	0	1	1				
0	1	0	0				
0	1	0	1				9,2
0	1	1	0				
0	1	1	1				
1	0	0	0				
1	0	0	1				4KBR
1	0	1	0				Aber
1	0	1	1				
1	1	0	0				
1	1	0	1				
1	1	1	0				
1	1	1	1				

						110
_	ier par			ode	grap	hique les
équatio	équations de KM3 et KM4					
	a b	00	01	11	10	
	00					
	01					
	11					
	10					
KM3 =						
J TN	a b	00	01	11	10	
3	00	***				
	01					
	11					
	10					
KM4 =						

3- Simplifier par la méthode algébrique les équations de KM1 et KM2

KM1 =	<mark> </mark>
	-B:5.\N
(A)	AMBRICA
KM2 =	

4- Tracer le schéma à contact de l'équation KM1


في دَارك اِتهنى على قراية إصغارك 🚾 كما

☆ www.Tadris.TN **☑** 55.635.666 **☑** 26.222.159

	5-	Transformer l'équation de « KM2 » à l'aide des opérateurs NAND à deux entrées :
+ V cc	6-	Représenter le logigramme de « KM2 » en utilisant des opérateurs logiques NAND à deu entrées :
[\ a	p E/	7400 &
R [R[1 2 3 4 5 6 7 KM2
-	<u> </u>	

7- Compléter le câblage avec le circuit 4067des sorties KM1, KM2, KM3et KM4 et donner le nom du circuit 4067......

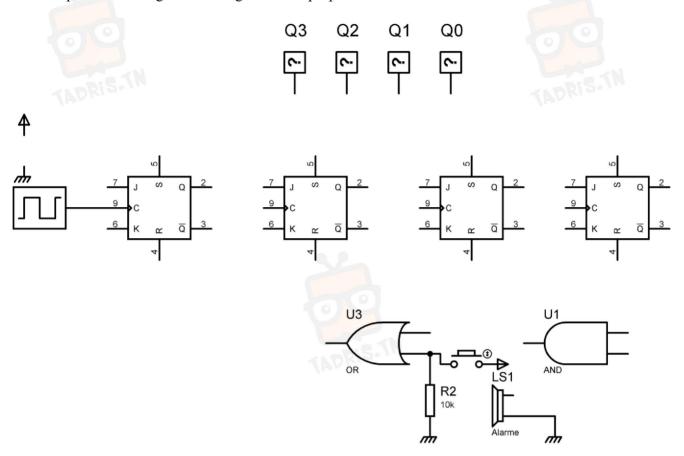
GND

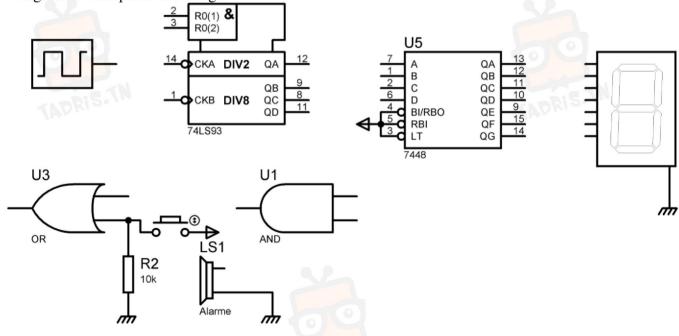
B- LOGIQUE PROGRAMMEE

I- Etude de microcontrôleur

En se référant au document page 2/6 : schéma d'implantation du pic.

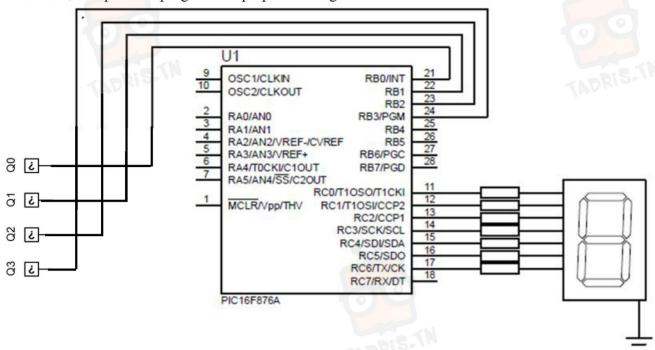
- 1- Combien de port il y a dans le microcontrôleur :
- 2- Quel sont les registres de configuration des ports :.....




3- Compléter le programme qui permet de gérer la nacelle.				
sbitat porta.b0;sbitatRA1_bit; sbitatporta.b2;				
;				
//mot clé début programme.				
TRISA=0x;TRISB=0x;//configuration.				
//initialisation.				
//boucle infinie.				
- Appendix				
32				
Un dispositif électronique permet de compter le nombre d'heures pendants les quelles la nacelle est en				
activité, si cette dernière est utilisée pendant 12heures alors une alarme avertie l'opérateur que les				
batteries doivent être rechargées et le compteur s'initialise.				
Pour chaque arrêt de la nacelle pour une opération de maintenance on appuie sur un bouton RAZ qui				
permet d'initialiser le compteur.				
1- Donner le modulo de ce compteur				
2- Ce compteur est à cycle complet ou non. Justifier				
3- Si le compteur est à cycle incomplet que doit on prévoir ?				

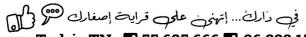
4- Compléter le câblage du montage suivant qui permet de réaliser la fonction décrite.

5- Dans le montage suivant on veut modifier le montage précédant en utilisant le circuit intégré 7493 au lieu des bascules JK et un modulo M=10, le cycle de comptage sera affiché avec un afficheur à sept segments. Compléter le câblage



6- Déduire le type d'afficheur 7 segments.....

Solution programmée de l'afficheur


On désire remplacer le transcodeur 7448 par le microcontrôleur 16F876A comme le montre le montage suivant, compléter le programme qui permet de gérer cette fonction.

Algorithme	Programme
Variable d'entrée i reliée au port b	char i at portb;
Tableau de 10 cases du type constantes:	const afficheur[] =
début	{
Case 1 ← code 7seg en Hex de	0x,
Case 2 ← code 7seg en Hex de	0x,
Case 3 ← code 7seg en Hex de	0x,
Case 4 ← code 7seg en Hex de	0x,
Case 5 ← code 7seg en Hex de	0x,
Case 6 ← code 7seg en Hex de	0x,
Case 7 ← code 7seg en Hex de	0x,
Case 8 ← code 7seg en Hex de	0x,
Case 9 ← code 7seg en Hex de	0x,
Case 10← code 7seg en Hex de	0x,
fin	}
programme	
début	
Configurer le port B	;

Configurer le port C	;			
Initialiser port C à 0	portc=;			
Initialiser i à 0	;			
TANT QUE (vraie)				
DÉBUT				
PortC ← contenu du tableau				
Fin TANT QUE				
Fin du programme				

